Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian \(Oxyz\), cho hai điểm \(M\left( {1; - 1; - 1} \right)\) và \(N\left( {5;5;1} \right)\). Mặt

Câu hỏi số 642768:
Thông hiểu

Trong không gian \(Oxyz\), cho hai điểm \(M\left( {1; - 1; - 1} \right)\) và \(N\left( {5;5;1} \right)\). Mặt phẳng \(\left( {OMN} \right)\) có phương trình là

Đáp án đúng là: A

Quảng cáo

Câu hỏi:642768
Phương pháp giải

Phương trình mặt phẳng đi qua \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\) và có 1 VTPT \(\overrightarrow n \left( {a;b;c} \right) \ne \overrightarrow 0 \) là:

\(a\left( {x - {x_0}} \right) + b\left( {y - {y_0}} \right) + c\left( {z - {z_0}} \right) = 0\).

Giải chi tiết

Ta có: \(\overrightarrow {OM}  = \left( {1; - 1; - 1} \right)\) và \(\overrightarrow {ON}  = \left( {5;5;1} \right) \Rightarrow \left[ {\overrightarrow {OM} ;\overrightarrow {ON} } \right] = \left( {4; - 6;10} \right)\).

\( \Rightarrow \left( {OMN} \right)\) là mặt phẳng đi qua O và có 1 vectơ pháp tuyến là \(\overrightarrow n  = \left( {2; - 3;5} \right)\) có phương trình là:

\(2x - 3y + 5z = 0\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com