Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho đường tròn (O) và điểm A nằm ngoài \((O)\). Từ \(A\) vẽ các tiếp tuyến A B, A C với \((O)\)

Câu hỏi số 662412:
Vận dụng

Cho đường tròn (O) và điểm A nằm ngoài \((O)\). Từ \(A\) vẽ các tiếp tuyến A B, A C với \((O)\) (B và C là các tiếp điểm). Gọi \({\rm{D}}\) là trung điềm của đoạn thẳng \({\rm{AC}},{\rm{BD}}\) cắt \(({\rm{O}})\) tại \({\rm{E}}\) (khác B) và BC cắt \({\rm{OA}}\) tại \({\rm{F}}\). Chứng minh bốn điểm C, D, E, F cùng thuộc một đường tròn.

Quảng cáo

Câu hỏi:662412
Phương pháp giải

Giải chi tiết

Vì \({\rm{AB}},{\rm{AC}}\) là 2 tiếp tuyến cắt nhau của \(({\rm{O}})\) nên \({\rm{AB}} = {\rm{AC}}\) (tính chất hai tiếp tuyến cắt nhau) \( \Rightarrow A\) thuộc trung trực của \({\rm{BC}}\).

Mà \({\rm{OB}} = {\rm{OC}}\) (cùng bằng bán kính) \( =  > {\rm{O}}\) thuộc trung trực của \({\rm{BC}}\).

\( \Rightarrow {\rm{OA}}\) là trung trực \({\rm{BC}}\).

\( \Rightarrow OA \bot BC\) tại \({\rm{F}}\) và \({\rm{F}}\) là trung điểm của \({\rm{BC}}\).

Do \({\rm{F}}\) là trung điểm của \({\rm{BC}}\) và \({\rm{D}}\) là trung điểm của \({\rm{AC}}\) (gt)

\( \Rightarrow \) FD là đường trung bình của  (định nghĩa)

(tính chất)

\( \Rightarrow \angle FDB = \angle DBA\) (so le trong)

Mà \(\angle ECF = \angle DBA\) (góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung \({\rm{BE}}\) )

\( \Rightarrow \angle EDF = \angle ECF( = \angle EBA)\)

Mà \({\rm{D}},{\rm{C}}\) là 2 đỉnh kề nhau cùng nhìn \({\rm{EF}}\) dưới 2 góc bằng nhau

\( \Rightarrow E,F,C,D\) cùng thuộc một đường tròn

\( \Rightarrow ECDF\) là tứ giác nội tiếp (dhnb).

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com