Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^2}\left( {x - 1} \right){\left( {x - 2}

Câu hỏi số 739837:
Thông hiểu

Hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^2}\left( {x - 1} \right){\left( {x - 2} \right)^3}\), \(\forall x \in \mathbb{R}\). Hàm số \(f\left( x \right)\) có bao nhiêu điểm cực đại?

Đáp án đúng là: D

Quảng cáo

Câu hỏi:739837
Phương pháp giải

Lập bảng xét dấu

Giải chi tiết

Ta có: \(f'\left( x \right) = 0 \Leftrightarrow {x^2}\left( {x - 1} \right){\left( {x - 2} \right)^3} = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\\x = 2\end{array} \right.\) với \(x = 0\) là nghiệm kép

vậy hàm số có 1 điểm cực đại là \(x=1\)

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com