Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho phương trình $x^{2} - 2mx - 2m^{2} - 1 = 0$ (m là tham số). Tìm m để phương trình đã cho có 2

Câu hỏi số 778285:
Thông hiểu

Cho phương trình $x^{2} - 2mx - 2m^{2} - 1 = 0$ (m là tham số). Tìm m để phương trình đã cho có 2 nghiệm $x_{1},\,\, x_{2}$ thoả mãn $\dfrac{x_{1}}{x_{2}} + \dfrac{x_{2}}{x_{1}} = - 3$.

Quảng cáo

Câu hỏi:778285
Phương pháp giải

Áp dụng định lí Viète

Giải chi tiết

Xét $\Delta' = \left( {- m} \right)^{2} - \left( {- 2m^{2} - 1} \right) = m^{2} + 2m^{2} + 1 = 3m^{2} + 1 > 0\,\forall m$

Phương trình luôn có 2 nghiệm phân biệt.

Định lí Viète $\left\{ \begin{array}{l} {x_{1} + x_{2} = 2m} \\ {x_{1}x_{2} = - 2m^{2} - 1} \end{array} \right.$

Ta có: $\dfrac{x_{1}}{x_{2}} + \dfrac{x_{2}}{x_{1}} = - 3$

$\begin{array}{l} {\dfrac{x_{1}^{2} + x_{2}^{2}}{x_{1}x_{2}} = - 3} \\ {x_{1}^{2} + x_{2}^{2} = - 3x_{1}x_{2}} \\ {\left( {x_{1} + x_{2}} \right)^{2} - 2x_{1}x_{2} = - 3x_{1}x_{2}} \\ {\left( {x_{1} + x_{2}} \right)^{2} + x_{1}x_{2} = 0} \\ {\left( {2m} \right)^{2} + \left( {- 2m^{2} - 1} \right) = 0} \\ {4m^{2} - 2m^{2} - 1 = 0} \\ {2m^{2} - 1 = 0} \\ {m^{2} = \dfrac{1}{2}} \end{array}$

$m = \dfrac{\sqrt{2}}{2}$ hoặc $m = \dfrac{- \sqrt{2}}{2}$

Vậy $m = \dfrac{\sqrt{2}}{2}$ hoặc $m = \dfrac{- \sqrt{2}}{2}$ là giá trị cần tìm.

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com