Cho $\Delta ABC$ cân tại A biết $\angle A = 40^{0}$. Trên cạnh $AB,AC$ lấy các điểm $M,N$
Cho $\Delta ABC$ cân tại A biết $\angle A = 40^{0}$. Trên cạnh $AB,AC$ lấy các điểm $M,N$ sao cho $BM = CN$.
a) Tứ giác BMNC là hình gì? Vì sao?
b) Tính số đo các góc của tứ giác BMNC
c) Gọi O là giao điểm của MC và BN. Chứng minh rằng $\text{OM} = \text{ON}$
Quảng cáo
a) Chứng minh hình thang có hai góc kề một đáy bằng nhau là hình thang cân.
Chứng minh tam giác AMN cân tại A.
Sử dụng tính chất của tam giác cân suy ra được $\angle AMN = \angle ANM = \angle ABC = \angle ACB = \dfrac{180^{0} - \angle A}{2}$
b) Tính các góc trong tứ giác BMNC, sử dụng tính chất của hình thang cân.
c) Chứng minh $\Delta\text{BNM} = \Delta\text{CMN}\left( {\text{c} - \text{g} - \text{c}} \right)$, chứng minh tam giác OMN cân tại O suy ra $\text{OM} = \text{ON}$
>> Học trực tuyến lớp 8 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com











