Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0.

Câu hỏi số 132:
Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

Đáp án đúng là: B

Quảng cáo

Câu hỏi:132
Giải chi tiết

Gọi D, E lần lượt là chân đường cao kẻ từ B và C.

Ta có B(0; -1) và \vec{BM}(2; 2). Suy ra MB ⊥ BC.

Kẻ MN // BC cắt BD tại N vì ∆ABC cân tại A nên BCNM là hình chữ nhật.

Phương trình đường thẳng MN là x + y - 3 = 0.

Vì N = MN ∩ BD nên N\left(\frac{8}{3};\frac{1}{3}\right).

Do NC ⊥ BC nên phương trình của đường thẳng NC là x - y - \frac{7}{3} = 0.

Khi đó tọa độ C là nghiệm của hệ phương trình \left\{\begin{matrix}x+y+1=0\\x-y-\frac{7}{3}=0\end{matrix}\right.

=> C\left(\frac{2}{3};-\frac{5}{3}\right).

Khi đó \vec{CM}\left(\frac{4}{3};\frac{8}{3}\right) nên phương trình AB là x + 2y + 2 = 0.

\vec{BN}\left(\frac{8}{3};\frac{4}{3}\right) nên phương trình cạnh AC là 2x + y + \frac{1}{3} = 0.

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com