Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Phương trình, Bất PT và hệ PT mũ và lôgarit

Câu hỏi số 16335:

Giải bất phương trình 4x – 3.2^{x+\sqrt{x^{2}-2x-3}}  - 4^{1+\sqrt{x^{2}-2x-3}} > 0.

Đáp án đúng là: C

Quảng cáo

Câu hỏi:16335
Giải chi tiết

Điều kiện: x ≤ - 1 hoặc x ≥ 3.

chia cả 2 vế của bpt cho \dpi{100} 4^{\sqrt{x^{2}-2x-3}}

Bất phương trình đã cho tương đương với 4^{x-\sqrt{x^{2}-2x-3}} - 3.2^{x-\sqrt{x^{2}-2x-3}} – 4 > 0

Đặt t = 2^{x-\sqrt{x^{2}-2x-3}} > 0, bất phương trình trên trở thành t2 – 3t – 4 > 0

⇔ t > 4 (do t > 0)

⇔ \sqrt{x^{2}-2x-3} < x – 2

\dpi{100} \left\{\begin{matrix} x-2>0 & \\ x^{2}-2x-3<(x-2)^{2} & \end{matrix}\right.

⇔ 2 < x < \frac{7}{2}.

Kết hợp với điều kiện, ta được nghiệm của bất phương trình đã cho là 3 ≤ x < \frac{7}{2}.

 

Tham Gia Group Dành Cho 2K7 luyện thi Tn THPT - ĐGNL - ĐGTD

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com