Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Hình học không gian

Câu hỏi số 16669:

Cho hình chóp S.ABC có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của S trên mặt phẳng (ABC) là điểm H thuộc cạnh AB sao cho HA = 2HB. Góc giữa đường thẳng SC và mặt phẳng (ABC) bằng 600. Tính thể tích của khối chóp S.ABC và tính khoảng cách giữa hai đường thẳng SA và BC theo a.

Đáp án đúng là: B

Quảng cáo

Câu hỏi:16669
Giải chi tiết

Ta có \widehat{SCH} là góc giữa SC và (ABC), suy ra \widehat{SCH} = 600.

Gọi D là trung điểm của cạnh AB. Ta có: HD = \frac{a}{6}, CD = \frac{a\sqrt{3}}{2} ,

HC = \sqrt{HD^{2}+CD^{2}} = \frac{a\sqrt{7}}{3}, SH = HC.tan600 = \frac{a\sqrt{21}}{3}

VS.ABC = \frac{1}{3}.SH.S∆ABC = \frac{1}{3}.\frac{a\sqrt{21}}{3} .\frac{a^{2}\sqrt{3}}{4} = \frac{a^{3}\sqrt{7}}{12}

Kẻ Ax // BC. Gọi N và K  lần lượt là hình chiếu vuông góc của H trên Ax và SN. Ta có BC // (SAN)  và BA = \frac{3}{2}HA nên d(SA, BC) = d(B, (SAN)) = \frac{3}{2}d(H, (SAN)).

Ta cũng có Ax ⊥ (SHN) nên Ax ⊥ HK.

AH = \frac{2a}{3}, HN = AH.sin600 = \frac{a\sqrt{3}}{3}, HK = \frac{SH.HN}{\sqrt{SH^{2}+HN^{2}}} = \frac{a\sqrt{42}}{12}.

Vậy d(SA, BC) = \frac{a\sqrt{42}}{8}.

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com