Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Hình giải tích phẳng

Câu hỏi số 16692:
Vận dụng

Trong mặt phẳng với hệ tọa độ Oxy, cho hình thoi ABCD có AC = 2BD và đường tròn tiếp xúc với các cạnh của hình thoi có phương trình x2 + y2 = 4. Viết phương trình chính tắc của elip (E) đi qua các đỉnh A, B, C, D của hình thoi. Biết A thuộc Ox.

Đáp án đúng là: D

Quảng cáo

Câu hỏi:16692
Giải chi tiết

Giả sử (E):  \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}}= 1 (a > b > 0). Hình thoi ABCD có AC = 2BD và A, B, C, D thuộc (E) suy ra OA = 2OB.

Không mất tính tổng quát , ta có thể xem A(a; 0) và B(0; \frac{a}{2}). Gọi H là hình chiếu vuông góc của O trên AB, suy ra OH là bán kính của đường tròn (C): x2 + y2 = 4.

Ta có: \frac{1}{4}\frac{1}{OH^{2}}\frac{1}{OA^{2}}\frac{1}{OB^{2}}\frac{1}{a^{2}} + \frac{4}{a^{2}}.

Suy ra a2 = 20, do đó b2 = 5. Vậy phương trình chính tắc của (E) là \frac{x^{2}}{20} + \frac{y^{2}}{5}=1.

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com