Hình giải tích phẳng
Trong mặt phẳng với hệ tọa độ Oxy, cho hình thoi ABCD có AC = 2BD và đường tròn tiếp xúc với các cạnh của hình thoi có phương trình x2 + y2 = 4. Viết phương trình chính tắc của elip (E) đi qua các đỉnh A, B, C, D của hình thoi. Biết A thuộc Ox.
Đáp án đúng là: D
Quảng cáo
Đáp án cần chọn là: D
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com



+
= 1 (a > b > 0). Hình thoi ABCD có AC = 2BD và A, B, C, D thuộc (E) suy ra OA = 2OB.
). Gọi H là hình chiếu vuông góc của O trên AB, suy ra OH là bán kính của đường tròn (C): x2 + y2 = 4.
=
=
+
=
+
.
+
=1.










