Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(f\left( x \right)\) có tính chất: \(f'\left( x \right) \ge 0\), \(\forall x \in \left( {0;3}

Câu hỏi số 188968:
Vận dụng

Cho hàm số \(f\left( x \right)\) có tính chất: \(f'\left( x \right) \ge 0\), \(\forall x \in \left( {0;3} \right)\) và \(f'\left( x \right) = 0 \Leftrightarrow x \in \left( {1;2} \right)\). Chọn khẳng định sai trong các khẳng định sau.

Đáp án đúng là: B

Quảng cáo

Câu hỏi:188968
Phương pháp giải

-          Hàm số \(y = f\left( x \right)\) có \(f'\left( x \right)\ge 0\) trên \(\left( a;b \right)\) và bằng 0 tại hữu hạn điểm \(\Rightarrow \) Hàm số đồng biến trên \(\left( a;b \right)\).

-          Hàm số \(y=f\left( x \right)\) có \(f'\left( x \right)\le 0\) trên \(\left( a;b \right)\) và bằng 0 tại hữu hạn điểm \(\Rightarrow \) Hàm số nghịch biến trên \(\left( a;b \right)\).

-          Hàm số \(y=f\left( x \right)\) có \(f'\left( x \right)=0\) trên \(\left( {a;b} \right)\) \(\Rightarrow \) Hàm số không đổi trên \(\left( a;b \right)\).

Giải chi tiết

Theo đề bài ta có: \(f'\left( x \right) = 0 \Leftrightarrow x \in \left( {1;2} \right)\) \( \Rightarrow \) là hàm hằng trên khoảng \(\left( 1;2 \right)\) \(\Rightarrow \) C đúng.

Lại có \(f'\left( x \right)\ge 0\), \(\forall x \in \left( {0;3} \right)\)\(\Rightarrow \) hàm số đồng biến trên \(\left( 0;1 \right)\) và \(\left( 2;3 \right)\) \( \Rightarrow \) A và D đúng.

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com