Tìm m để phương trình \(\dfrac{{x + 1}}{{\left| {x - 2} \right|}} = m\) có hai nghiệm phân
Tìm m để phương trình \(\dfrac{{x + 1}}{{\left| {x - 2} \right|}} = m\) có hai nghiệm phân biệt.
Đáp án đúng là: D
Quảng cáo
Phương trình đã cho có dạng: \(\frac{P(x)}{|Q(x)|}=m\)
Vẽ đồ thị hàm số \(y=\frac{P(x)}{|Q(x)|}\)
Số nghiệm của phương trình \(\frac{P(x)}{|Q(x)|}=m\) là số giao điểm của đường thẳng \(y=m\) với đồ thị hàm số \(y=\frac{P(x)}{|Q(x)|}.\)
Dựa vào đồ thị hàm số suy ra kết luận đúng.
Đáp án cần chọn là: D
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













