Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(A\), \(SA = a\) và vuông góc với đáy,

Câu hỏi số 193598:
Vận dụng

Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(A\), \(SA = a\) và vuông góc với đáy, tam giác \(SBC\) cân tại \(S\) và tạo với đáy một góc \({45^0}\). Gọi \(E\) là trung điểm của \(BC\). Khoảng cách từ trung điểm của \(AC\) đến mặt phẳng \((SAE)\) là:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:193598
Phương pháp giải

+) Chứng minh mặt phẳng (SAE) là mặt phẳng chứa đường cao.

+) Xác định khoảng cách từ 1 điểm đến mặt phẳng chứa đường cao.

+) Sử dụng tính chất \(\left\{ \begin{array}{l}a \bot \left( \alpha  \right)\\b//a\end{array} \right. \Rightarrow b \bot \left( \alpha  \right)\).

+) Xác định góc giữa hai mặt phẳng và sử dụng tính chất đường trung bình của tam giác.

Giải chi tiết

Gọi D là trung điểm của AC

Vì tam giác SBC cân tại S nên trung tuyến SE đồng thời là đường cao

\( \Rightarrow SE \bot BC\)

Ta có: \(\left. \begin{array}{l}BC \bot SE\\BC \bot SA\left( {SA \bot \left( {ABC} \right)} \right)\end{array} \right\} \Rightarrow BC \bot AE\)

Suy ra tam giác ABC vuông cân tại A (AE là trung tuyến đồng thời là đường cao)

Trong \(\left( {ABC} \right)\) kẻ \(DH//BC\)

Ta có: \(\left. \begin{array}{l}DH//BC\\BC \bot \left( {SAE} \right)\end{array} \right\} \Rightarrow DH \bot \left( {SAE} \right) \Rightarrow d\left( {D;\left( {SAE} \right)} \right) = DH\)

\(\left. \begin{array}{l}DH//CE\\AD = DC\end{array} \right\} \Rightarrow \) DH là đường trung bình của tam giác ACE \( \Rightarrow DH = \frac{1}{2}CE\)

Ta có: \(\left. \begin{array}{l}\left( {SBC} \right) \cap \left( {ABC} \right) = BC\\SE \bot BC\\AE \bot BC\end{array} \right\} \Rightarrow \widehat {\left( {\left( {SBC} \right);\left( {ABC} \right)} \right)} = \widehat {\left( {SE;AE} \right)} = \widehat {SEA} = {45^0}\) (Vì \(\widehat {SEA} < {90^0}\))

Vì \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot AE \Rightarrow \Delta SAE\) vuông tại A

Lại có: \(\widehat {SEA} = {45^0} \Rightarrow \Delta SAE\) vuông cân tại A\( \Rightarrow SA = AE = a\)

Xét tam giác vuông ABC có: \(AE = \frac{1}{2}BC\)(Trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền)

\(\begin{array}{l} \Rightarrow BC = 2AE = 2a \Rightarrow CE = \frac{1}{2}BC = a\\ \Rightarrow DH = \frac{1}{2}CE = \frac{a}{2}\end{array}\)

Chọn A.

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com