Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình lăng trụ ABC. A’B’C’ có đáy ABC là tam giác đều cạnh a. Hình chiếu vuông góc của

Câu hỏi số 202475:
Vận dụng

Cho hình lăng trụ ABC. A’B’C’ có đáy ABC là tam giác đều cạnh a. Hình chiếu vuông góc của A’ lên mặt phẳng (ABC) trùng với tâm O của đường tròn ngoại tiếp tam giác ABC. Cho \(\widehat {BAA'} = {45^0}\). Thể tích của khối lăng trụ đã cho là:

Đáp án đúng là: B

Quảng cáo

Câu hỏi:202475
Giải chi tiết

Gọi E là trung điểm của AB ta có:
\(\left\{ \begin{array}{l}OE \bot AB\\A'O \bot AB\left( {A'O \bot \left( {ABC} \right)} \right)\end{array} \right. \Rightarrow AB \bot \left( {A'OE} \right) \Rightarrow AB \bot A'E\)
Tam giác vuông A'EA có \(\widehat {A'AE} = {45^0} \Rightarrow \Delta EAA'\)vuông cân tại E\( \Rightarrow EA' = EA = \dfrac{a}{2};AA' = \dfrac{{a\sqrt 2 }}{2}\)
Tam giác ABC đều cạnh a nên \(CE = \dfrac{{a\sqrt 3 }}{2} \Rightarrow OE = \dfrac{1}{3}. \dfrac{{a\sqrt 3 }}{2} = \dfrac{{a\sqrt 3 }}{6}\)
\(A'O \bot \left( {ABC} \right) \Rightarrow A'O \bot OE \Rightarrow \Delta A'OE\) vuông tại O
\( \Rightarrow A'O = \sqrt {A'{E^2} - O{E^2}} = \sqrt {\dfrac{{{a^2}}}{4} - \dfrac{{{a^2}}}{{12}}} = \dfrac{{a\sqrt 6 }}{6}\)
Tam giác ABC đều cạnh a nên \({S_{ABC}} = \dfrac{{{a^2}\sqrt 3 }}{4}\)
Vậy \({V_{ABC. A'B'C'}} = A'O. {S_{ABC}} = \dfrac{{a\sqrt 6 }}{6}. \dfrac{{{a^2}\sqrt 3 }}{4} = \dfrac{{{a^3}\sqrt 2 }}{8}\)
Chọn B.

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com