Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Một người thợ có một khối đá hình trụ. Kẻ hai đường kính MN và PQ sao cho \(MN \bot PQ\).

Câu hỏi số 205285:
Vận dụng

Một người thợ có một khối đá hình trụ. Kẻ hai đường kính MN và PQ sao cho \(MN \bot PQ\). Người thợ đó cắt khối đá theo các mặt đi qua 3 trong 4 điểm M, N, P, Q để thu được một khối đá có hình tứ diện MNPQ. Biết \(MN = 60cm\) và thể tích của khối tứ diện MNPQ bằng \(30d{m^3}\). Hãy tính thể tích của lượng đá bị cắt bỏ (làm tròn kết quả đến 1 chữ số thập phân).

Đáp án đúng là: A

Quảng cáo

Câu hỏi:205285
Giải chi tiết

Trong mặt phẳng (NPQ) kẻ \(NH \bot PQ\,\,\left( {H \in PQ} \right)\)ta có: \(\left. \begin{array}{l}MN \bot PQ\\NH \bot PQ\end{array} \right\} \Rightarrow PQ \bot \left( {MNH} \right) \Rightarrow PQ \bot MH\)

Trong (MNH) kẻ \(HK \bot MN\,\,\left( {K \in MN} \right)\)và \(MI \bot HN\,\,\left( {I \in HN} \right)\)\( \Rightarrow \left\{ \begin{array}{l}PQ \bot HK\,\,\left( {PQ \bot \left( {MNH} \right) \supset HK} \right)\\PQ \bot MI\,\,\left( {PQ \bot \left( {MNH} \right) \supset MI} \right)\end{array} \right.\)

\( \Rightarrow d\left( {PQ;MN} \right) = HK\)

Ta có:\(\left. \begin{array}{l}MI \bot HN\\MI \bot PQ\end{array} \right\} \Rightarrow MI \bot \left( {NPQ} \right)\)

Xét tam giác MNH có: \({S_{MNH}} = \dfrac{1}{2}MN.MH.\sin \widehat {NMH} = \dfrac{1}{2}MI.NH \Rightarrow MI = \dfrac{{MN.MH.\sin \widehat {NMH}}}{{NH}}\)

Xét tam giác vuông MHK có: \(MH.\sin \widehat {NMH} = HK = d\left( {MN;PQ} \right) \Rightarrow MI = \dfrac{{MN.d\left( {MN;PQ} \right)}}{{NH}}\)

\({S_{NPQ}} = \dfrac{1}{2}NH.PQ\)

\( \Rightarrow {V_{MNPQ}} = \dfrac{1}{3}MI.{S_{NPQ}} = \dfrac{1}{3}.\dfrac{{MN.d\left( {MN;PQ} \right)}}{{NH}}.\dfrac{1}{2}NH.PQ = \dfrac{1}{6}MN.PQ.d\left( {MN;PQ} \right) = 30\,\,\left( {d{m^3}} \right)\)

Mà \(MN = PQ = 60cm = 6dm \Rightarrow \dfrac{1}{6}.6.6.d\left( {MN;PQ} \right) = 30 \Rightarrow d\left( {MN;PQ} \right) = 5\,\,\left( {dm} \right)\)

 

MN, PQ nằm trong hai mặt phẳng đáy song song với nhau nên \(d\left( {MN;PQ} \right) = h = 5\,\,\left( {dm} \right)\), với h là chiều cao của hình trụ.

Bán kính đáy của hình trụ \(r = \dfrac{6}{2} = 3\,\,\left( {dm} \right)\)

\( \Rightarrow {V_{ht}} = \pi {r^2}h = \pi {.3^2}.5 = 45\pi \,\,\left( {d{m^3}} \right)\)

Vậy thể của lượng đá bị cắt bỏ là: \(V = {V_{ht}} - {V_{MNPQ}} = 45\pi  - 30 = 111,4\,\,\left( {d{m^3}} \right)\)

Cách 2: 

Dựng hình hộp chữ nhật MANB.DPCQ có đáy MANB là nội tiếp đường tròn đáy của hình trụ.

Ta có: \(MN \bot PQ;AB//PQ \Leftrightarrow AB \bot MN\) \( \Rightarrow AMBN\) là hình vuông.

Ta thấy

\(\begin{array}{l}{V_{MANB.DPCQ}} = {V_{P.AMN}} + {V_{M.PDQ}} + {V_{N.PCQ}} + {V_{B.MNQ}} + {V_{MNPQ}}\\ \Rightarrow {V_{MNPQ}} = {V_{MANB.DPCQ}} = {V_{P.AMN}} - {V_{M.PDQ}} - {V_{N.PCQ}} = {V_{MANB.DPCQ}}\left( {1 - \dfrac{1}{6} - \dfrac{1}{6} - \dfrac{1}{6} - \dfrac{1}{6}} \right) = \dfrac{1}{3}{V_{MANB.DPCQ}}\end{array}\)

\( \Rightarrow {V_{MANC.DPCQ}} = 3{V_{MNPQ}} = 3.30 = 90\left( {d{m^3}} \right)\)

Mặt khác \({V_{MANC.DPCQ}} = {S_{MANB}}.MD\)

Mà \({S_{MANB}} = \dfrac{1}{2}AB.MN = \dfrac{1}{2}6.6 = 18\)\(\left( {d{m^2}} \right)\)

\( \Rightarrow h = MD = \dfrac{{{V_{MANB.DPCQ}}}}{{{S_{MANB}}}} = \dfrac{{90}}{{18}} = 5\left( {dm} \right)\)

Bán kính đáy của hình trụ \(r = \dfrac{6}{2} = 3\,\,\left( {dm} \right)\)\( \Rightarrow {V_{ht}} = \pi {r^2}h = \pi {.3^2}.5 = 45\pi \,\,\left( {d{m^3}} \right)\)

Vậy thể của lượng đá bị cắt bỏ là: \(V = {V_{ht}} - {V_{MNPQ}} = 45\pi  - 30 = 111,4\,\,\left( {d{m^3}} \right)\)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com