Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Phương trình  \(\sqrt 3 \sin 2x - 2{\cos ^2}x = 2\sqrt {2 + 2\cos 2x} \) có mấy họ nghiệm?

Câu hỏi số 205583:
Vận dụng

Phương trình  \(\sqrt 3 \sin 2x - 2{\cos ^2}x = 2\sqrt {2 + 2\cos 2x} \) có mấy họ nghiệm?

Đáp án đúng là: A

Quảng cáo

Câu hỏi:205583
Giải chi tiết

\(\eqalign{& \,\,\,\,\,\,\,\sqrt 3 \sin 2x - 2{\cos ^2}x = 2\sqrt {2 + 2\cos 2x} \cr & \Leftrightarrow \sqrt 3 \sin 2x - 2{\cos ^2}x = 2\sqrt {2 + 2\left( {2{{\cos }^2}x - 1} \right)} \cr & \Leftrightarrow \sqrt 3 \sin 2x - 2{\cos ^2}x = 4\left| {\cos x} \right| \cr & \Leftrightarrow 2\sqrt 3 \sin x\cos x - 2{\cos ^2}x - 4\left| {\cos x} \right| = 0 \cr & \Leftrightarrow \sqrt 3 \sin x\cos x - {\cos ^2}x - 2\left| {\cos x} \right| = 0 \cr} \)

Trường hợp 1: \(\cos x \ge 0 \Rightarrow \left| {\cos x} \right| = \cos x\) . Khi đó:

\(\eqalign{& PT \Leftrightarrow \sqrt 3 \sin x\cos x - {\cos ^2}x - 2\cos x = 0  \cr & \,\,\,\,\,\,\,\, \Leftrightarrow \cos x\left( {\sqrt 3 \sin x - \cos x - 2} \right) = 0  \cr & \,\,\,\,\,\,\,\, \Leftrightarrow \cos x\left( {{{\sqrt 3 } \over 2}\sin x - {1 \over 2}\cos x - 1} \right) = 0  \cr & \,\,\,\,\,\,\,\, \Leftrightarrow \cos x\left( {\sin x\cos {\pi  \over 6} - \cos x\sin {\pi  \over 6} - 1} \right) = 0  \cr & \,\,\,\,\,\,\,\,\Leftrightarrow \left[ \matrix{\cos x = 0 \hfill \cr \sin \left( {x - {\pi  \over 6}} \right) = 1 \hfill \cr}  \right. \Leftrightarrow \left[ \matrix{ x = {\pi  \over 2} + k\pi  \hfill \cr  x - {\pi  \over 6} = {\pi  \over 2} + k2\pi  \hfill \cr}  \right.  \cr  & \,\,\,\,\,\,\,\, \Leftrightarrow \left[ \matrix{x = {\pi  \over 2} + k\pi  \hfill \cr x = {{2\pi } \over 3} + k2\pi  \hfill \cr}  \right. \Rightarrow x = {\pi  \over 2} + k\pi \,\,\,\left( {k \in Z} \right) \cr} \)

(Vì \(x = {{2\pi } \over 3} + k2\pi  \Rightarrow \cos x =  - {1 \over 2} < 0 \Rightarrow ktm\) )

Trường hợp 2:\(\cos x < 0 \Rightarrow \left| {\cos x} \right| =  - \cos x\) . Khi đó:

\(\eqalign{
& PT \Leftrightarrow \sqrt 3 \sin x\cos x - {\cos ^2}x + 2\cos x = 0 \Leftrightarrow \cos x\left( {\sqrt 3 \sin x - \cos x + 2} \right) = 0 \cr
& \,\,\,\,\,\,\,\, \Leftrightarrow \cos x\left( {{{\sqrt 3 } \over 2}\sin x - {1 \over 2}\cos x + 1} \right) = 0 \Leftrightarrow \cos x\left( {\sin x\cos {\pi \over 6} - \cos x\sin {\pi \over 6} + 1} \right) = 0 \cr
& \,\,\,\,\,\,\,\, \Leftrightarrow \left[ \matrix{
\cos x = 0 \hfill \cr
\sin \left( {x - {\pi \over 6}} \right) = - 1 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = {\pi \over 2} + k\pi \hfill \cr
x - {\pi \over 6} = - {\pi \over 2} + k2\pi \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = {\pi \over 2} + k\pi \hfill \cr
x = - {\pi \over 3} + k2\pi \hfill \cr} \right.\,\,\left( {KTM} \right) \cr} \)

Vậy phương trình có duy nhất 1 họ nghiệm là \(x = {\pi  \over 2} + k\pi \,\,\,\left( {k \in Z } \right)\)

Đáp án cần chọn là: A

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com