Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Phương trình \(3{\cos ^2}4x + 5{\sin ^2}4x = 2 - 2\sqrt 3 \sin 4x\cos 4x\) có nghiệm là:

Câu hỏi số 206743:
Thông hiểu

Phương trình \(3{\cos ^2}4x + 5{\sin ^2}4x = 2 - 2\sqrt 3 \sin 4x\cos 4x\) có nghiệm là:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:206743
Phương pháp giải

TH1: Kiểm tra xem \(\cos 4x=0\,\,\left( \sin 4x=\pm 1 \right)\) có thỏa mãn là nghiệm của không?

TH2: Khi \(\cos 4x\ne 0\). Chia 2 vế phương trình cho \({{\cos }^{2}}4x\).

Giải chi tiết

Trường hợp 1: \(\cos 4x = 0 \Leftrightarrow 4x = {\pi  \over 2} + k\pi  \Leftrightarrow x \ne {\pi  \over 8} + {{k\pi } \over 4}\,\,\left( {k \in Z} \right)\). Khi đó \({\sin ^2}4x = 1\) 

Thay vào phương trình ta có: \(2.0 + 5.1 = 2 - 2\sqrt 3 .0 \Leftrightarrow 5 = 2\,\,\left( {Vô \, lý} \right)\)

\( \Rightarrow x = {\pi  \over 8} + {{k\pi } \over 4}\,\,\left( {k \in Z} \right)\)  không là nghiệm của phương trình.

Trường hợp 2: \(\cos 4x \ne 0 \Leftrightarrow x \ne {\pi  \over 8} + {{k\pi } \over 4}\,\,\left( {k \in Z} \right)\). Chia cả 2 vế của phương trình cho \({\cos ^2}4x\) ta được:

\(\eqalign{ & 3 + 5{{{{\sin }^2}4x} \over {{{\cos }^2}4x}} = {2 \over {{{\cos }^2}4x}} - 2\sqrt 3 {{\sin 4x} \over {\cos 4x}} \cr & \Leftrightarrow 3 + 5{\tan ^2}4x = 2\left( {1 + {{\tan }^2}4x} \right) - 2\sqrt 3 \tan x \Leftrightarrow 3{\tan ^2}4x + 2\sqrt 3 \tan x + 1 = 0 \cr & \Leftrightarrow {\left( {\sqrt 3 \tan 4x + 1} \right)^2} = 0 \Leftrightarrow \sqrt 3 \tan 4x + 1 = 0 \Leftrightarrow \tan 4x = - {1 \over {\sqrt 3 }} \cr & \Leftrightarrow 4x = - {\pi \over 6} + k\pi \Leftrightarrow x = - {\pi \over {24}} + {{k\pi } \over 4}\,\,\,\left( {k \in Z} \right)\,\,\left( {tm} \right) \cr} \)

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com