Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho a, b, x là các số thực dương khác 1 thỏa: \(4\log _a^2x + 3\log _b^2x = 8{\log _a}x.{\log _b}x\quad

Câu hỏi số 209052:
Vận dụng

Cho a, b, x là các số thực dương khác 1 thỏa: \(4\log _a^2x + 3\log _b^2x = 8{\log _a}x.{\log _b}x\quad (1)\). Mệnh đề (1) tương đương với mệnh đề nào sau đây:

Đáp án đúng là: B

Quảng cáo

Câu hỏi:209052
Giải chi tiết

Phương pháp:

Coi biểu thức là hàm bậc hai đối với ẩn \({\log _a}x\)  và tham số \({\log _b}x\)

Giải phương trình bậc hai để tìm mối liên hệ giữa \({\log _a}x\)  và \({\log _b}x\)

Suy ra mối liên hệ giữa \(a\)  và \(b\).

Cách giải:

\(4\log _a^2x - 8{\log _b}x.{\log _a}x + 3\log _b^2x = 0\)

Ta có: \(\Delta ' = {(4{\log _b}x)^2} - 3.4.{\log _b}x = 4\log _b^2x > 0\). Suy ra

\({\log _a}x = \dfrac{3}{2}{\log _b}x \Rightarrow {\log _a}x = {\log _{\sqrt[3]{{{b^2}}}}}x \Rightarrow a = \sqrt[3]{{{b^2}}} \Rightarrow {a^3} = {b^2}\)

 \({\log _a}x = \dfrac{1}{2}{\log _b}x \Rightarrow {\log _a}x = {\log _{{b^2}}}x \Rightarrow a = {b^2}\)

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com