Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Phương trình \(\left( {{z^2} + i} \right)\left( {{z^2} - 2iz - 1} \right) = 0\) có mấy nghiệm phức phân

Câu hỏi số 210106:
Thông hiểu

Phương trình \(\left( {{z^2} + i} \right)\left( {{z^2} - 2iz - 1} \right) = 0\) có mấy nghiệm phức phân biệt?

Đáp án đúng là: D

Quảng cáo

Câu hỏi:210106
Giải chi tiết

\(\left( {{z^2} + i} \right)\left( {{z^2} - 2iz - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}{z^2} + i = 0\\{z^2} - 2iz - 1 = 0\end{array} \right.\)

+) Phương trình \({z^2} + i = 0 \Rightarrow {z^2} =  - i \Rightarrow \) z là một căn bậc hai của \(-i\).

Gọi \(z = a + bi\) là một căn bậc hai của \(-i\) ta có  

\(\begin{array}{l}{z^2} = - i \Leftrightarrow {a^2} + 2abi - {b^2} = - i\\\Rightarrow \left\{ \begin{array}{l}{a^2} - {b^2} = 0\\2ab = - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}a = b\\a = - b\end{array} \right.\\2ab = - 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}2{a^2} = - 1\,\,\left( {vn} \right)\\2{a^2} = 1\end{array} \right. \Rightarrow \left[ \begin{array}{l}a = \frac{1}{{\sqrt 2 }} \Rightarrow b = - \frac{1}{{\sqrt 2 }}\\a = - \frac{1}{{\sqrt 2 }} \Rightarrow b = \frac{1}{{\sqrt 2 }}\end{array} \right. \Rightarrow \left[ \begin{array}{l}z = \frac{1}{{\sqrt 2 }} - \frac{1}{{\sqrt 2 }}i\\z = - \frac{1}{{\sqrt 2 }} + \frac{1}{{\sqrt 2 }}i\end{array} \right.\end{array}\)

\( \Rightarrow \) Phương trình trên có hai nghiệm.

+) Phương trình: \({z^2}-2iz-1 = 0 \Leftrightarrow {z^2}-2iz + {i^2} = 0 \Leftrightarrow {\left( {z-i} \right)^2} = 0 \Leftrightarrow z = i\)

Vậy phương trình có 3 nghiệm.

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com