Cho \(F\left( x \right) = {x^2}\) là nguyên hàm của hàm số \(f\left( x \right){e^{2x}}\) và \(f\left( x
Cho \(F\left( x \right) = {x^2}\) là nguyên hàm của hàm số \(f\left( x \right){e^{2x}}\) và \(f\left( x \right)\) là hàm số thỏa mãn điều kiện \(f\left( 0 \right) = - \,1,\,\,f\left( 1 \right) = 0.\) Tính tích phân \(I = \int\limits_0^1 {f'\left( x \right){e^{2x}}{\rm{d}}x} .\)
Đáp án đúng là: B
Quảng cáo
- F(x) được gọi là 1 nguyên hàm của hàm số f(x) khi và chỉ khi \(\int {f\left( x \right)dx} = F\left( x \right)\) và \(\int\limits_a^b {f\left( x \right)dx} = \left. {F\left( x \right)} \right|_a^b.\)
- Sử dụng công thức của tích phân từng phần: \(\int\limits_a^b {udv} = \left. {uv} \right|_a^b - \int\limits_a^b {vdu} \).
- Trong các tích phân đã xuất hiện dạng vi phân \(f'\left( x \right)dx\) thì ta đặt \(dv = f'\left( x \right)dx\).
- Đồng nhất thức.
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












