Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tính \(I=\underset{x\to +\infty }{\mathop{Lim}}\,\left( \sqrt{4{{x}^{2}}+3x+1}-2x \right)?\) 

Câu hỏi số 211751:
Thông hiểu

Tính \(I=\underset{x\to +\infty }{\mathop{Lim}}\,\left( \sqrt{4{{x}^{2}}+3x+1}-2x \right)?\) 

Đáp án đúng là: D

Quảng cáo

Câu hỏi:211751
Giải chi tiết

Phương pháp:

Khử dạng vô định \(\infty -\infty \):

 - Trục căn thức \(f\left( x \right)=\sqrt{4{{x}^{2}}+3x+1}-2x=\frac{3x+1}{\sqrt{4{{x}^{2}}+3x+1}+2x}\)

- Chia cả tử và mẫu của \(f\left( x \right)\) cho \(x\) rồi cho \(x\to +\infty \).Cách giải:

\(\begin{align} & \underset{x\to +\infty }{\mathop{\lim }}\,\left( \sqrt{4{{x}^{2}}+3x+1}-2x \right)=\underset{x\to +\infty }{\mathop{\lim }}\,\frac{\left( \sqrt{4{{x}^{2}}+3x+1}-2x \right)\left( \sqrt{4{{x}^{2}}+3x+1}+2x \right)}{\sqrt{4{{x}^{2}}+3x+1}+2x} \\ & =\underset{x\to +\infty }{\mathop{\lim }}\,\frac{4{{x}^{2}}+3x+1-{{\left( 2x \right)}^{2}}}{\sqrt{4{{x}^{2}}+3x+1}+2x}=\underset{x\to +\infty }{\mathop{\lim }}\,\frac{3x+1}{\sqrt{4{{x}^{2}}+3x+1}+2x}=\underset{x\to +\infty }{\mathop{\lim }}\,\frac{3+\frac{1}{x}}{\sqrt{4+\frac{3}{x}+\frac{1}{{{x}^{2}}}}+2}=\frac{3}{\sqrt{4}+2}=\frac{3}{4} \\ \end{align}\)

 

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com