Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Với mỗi giá trị của tham số m, xét mặt phẳng \(({P_m})\)  xác định bởi phương trình \(mx + m(m + 1)y + {(m - 1)^2}z - 1 = 0\). Tìm tọa độ của điểm thuộc mọi mặt phẳng \(({P_m})\).

Câu 211910: Với mỗi giá trị của tham số m, xét mặt phẳng \(({P_m})\)  xác định bởi phương trình \(mx + m(m + 1)y + {(m - 1)^2}z - 1 = 0\). Tìm tọa độ của điểm thuộc mọi mặt phẳng \(({P_m})\).

A. \(\left( {1, - 2,1} \right)\;\)

B. \(\left( {0,1,1} \right)\)   

C. \(\left( {3, - 1,1} \right)\) 

D. Không có điểm như vậy.

Câu hỏi : 211910
  • Đáp án : C
    (8) bình luận (0) lời giải

    Giải chi tiết:

    Giả sử  \(M({x_0},{y_0},{z_0})\)  là điểm thuộc \(({P_m})\)  ta có

    \(\begin{array}{l}m{x_0} + m(m + 1){y_0} + {(m - 1)^2}{z_0} - 1 = 0,\forall m\\ \Leftrightarrow m{x_0} + {m^2}{y_0} + m{y_0} + {m^2}{z_0} - 2m{z_0} + {z_0} - 1 = 0,\forall m\\ \Leftrightarrow ({y_0} + {z_0}){m^2} + ({x_0} + {y_0} - 2{z_0})m + {z_0} - 1 = 0,\forall m\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{y_0} + {z_0} = 0}&{}\\{{x_0} + {y_0} - 2{z_0} = 0}&{}\\{{z_0} - 1 = 0}&{}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{z_0} = 1}&{}\\{{y_0} = - 1}&{}\\{{x_0} = 3}&{}\end{array}} \right. \Leftrightarrow M(3, - 1,1)\end{array}\)

    Chọn C

    Lời giải sai Bình thường Khá hay Rất Hay

Hỗ trợ - HƯớng dẫn

  • 024.7300.7989
  • 1800.6947free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com