Cho số thực \(a > 0\) và \(a \ne 1.\) Hãy rút gọn biểu thức \(P = \frac{{{a^{\frac{1}{3}}}\left(
Cho số thực \(a > 0\) và \(a \ne 1.\) Hãy rút gọn biểu thức \(P = \frac{{{a^{\frac{1}{3}}}\left( {{a^{\frac{1}{2}}} - {a^{\frac{5}{2}}}} \right)}}{{{a^{\frac{1}{4}}}\left( {{a^{\frac{7}{{12}}}} - {a^{\frac{{19}}{{12}}}}} \right)}}.\)
Đáp án đúng là: A
Quảng cáo
Phương pháp giải. Sử dụng công thức \({a^\alpha }.{a^\beta } = {a^{\alpha + \beta }},{\kern 1pt} \,{x^2} - {y^2} = \left( {x - y} \right)\left( {x + y} \right).\)
Đáp án cần chọn là: A
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












