Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho số thực \(a > 0\) và \(a \ne 1.\) Hãy rút gọn biểu thức \(P = \frac{{{a^{\frac{1}{3}}}\left(

Câu hỏi số 212760:
Nhận biết

Cho số thực \(a > 0\) và \(a \ne 1.\) Hãy rút gọn biểu thức \(P = \frac{{{a^{\frac{1}{3}}}\left( {{a^{\frac{1}{2}}} - {a^{\frac{5}{2}}}} \right)}}{{{a^{\frac{1}{4}}}\left( {{a^{\frac{7}{{12}}}} - {a^{\frac{{19}}{{12}}}}} \right)}}.\)

Đáp án đúng là: A

Quảng cáo

Câu hỏi:212760
Phương pháp giải

Phương pháp giải. Sử dụng công thức  \({a^\alpha }.{a^\beta } = {a^{\alpha + \beta }},{\kern 1pt} \,{x^2} - {y^2} = \left( {x - y} \right)\left( {x + y} \right).\)

Giải chi tiết

Lời giải chi tiết.

Ta có

\(P = \frac{{{a^{\frac{1}{3}}}\left( {{a^{\frac{1}{2}}} - {a^{\frac{5}{2}}}} \right)}}{{{a^{\frac{1}{4}}}\left( {{a^{\frac{7}{{12}}}} - {a^{\frac{{19}}{{12}}}}} \right)}} = \frac{{{a^{\frac{1}{3}}}.{a^{\frac{1}{2}}}\left( {1 - {a^{\frac{5}{2} - \frac{1}{2}}}} \right)}}{{{a^{\frac{1}{4}}}.{a^{\frac{7}{{12}}}}\left( {1 - {a^{\frac{{19}}{{12}} - \frac{7}{{12}}}}} \right)}} = \frac{{{a^{\frac{1}{3} + \frac{1}{2}}}\left( {1 - {a^2}} \right)}}{{{a^{\frac{1}{4} + \frac{7}{{12}}}}\left( {1 - a} \right)}} = \frac{{{a^{\frac{5}{6}}}\left( {1 - a} \right)\left( {1 + a} \right)}}{{{a^{\frac{{10}}{{12}}}}\left( {1 - a} \right)}} = 1 + a\,\,\left( {a > 0,\,a \ne 1} \right).\)

 

Chọn đáp án A.

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com