Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

 Cho \(Q=\left( \frac{{{x}^{2}}+3x}{{{x}^{3}}+3{{x}^{2}}+9x+27}+\frac{3}{{{x}^{2}}+9} \right):\left(

Câu hỏi số 213594:
Vận dụng

 Cho \(Q=\left( \frac{{{x}^{2}}+3x}{{{x}^{3}}+3{{x}^{2}}+9x+27}+\frac{3}{{{x}^{2}}+9} \right):\left( \frac{1}{x-3}-\frac{6x}{{{x}^{3}}-3{{x}^{2}}+9x-27} \right)\)

a) Rút gọn \(Q\)

b) Tính giá trị của \(Q\) khi \(\left| x \right|=2\)

c) Tìm các số nguyên tố \(x\) để \(Q\in Z\)

Quảng cáo

Câu hỏi:213594
Phương pháp giải

Phương pháp:

- Tìm điều kiện để phân thức có nghĩa

- Thu gọn phân thức

- Tìm điều kiện để biểu thức nhận giá trị nguyên

- Phân biệt được thế nào là số nguyên tố để loại nghiệm

Giải chi tiết

Cách giải:

a) \(Q=\left( \frac{{{x}^{3}}+3x}{{{x}^{3}}+3{{x}^{2}}+9x+27}+\frac{3}{{{x}^{2}}+9} \right):\left( \frac{1}{x-3}-\frac{6x}{{{x}^{3}}-3{{x}^{2}}+9x-27} \right)\) (ĐK: \(x\ne \pm 3\))

\(\begin{align} & Q=\left( \frac{{{x}^{2}}+3x}{{{x}^{3}}+3{{x}^{2}}+9x+27}+\frac{3}{{{x}^{2}}+9} \right):\left( \frac{1}{x-3}-\frac{6x}{{{x}^{3}}-3{{x}^{2}}+9x-27} \right) \\& =\left( \frac{{{x}^{2}}+3x}{{{x}^{2}}(x+3)+9(x+3)}+\frac{3}{{{x}^{2}}+9} \right):\left( \frac{1}{x-3}-\frac{6x}{{{x}^{2}}(x-3)+9(x-3)} \right) \\ & =\frac{{{x}^{2}}+3x+3x+9}{\left( {{x}^{2}}+9 \right)\left( x+3 \right)}:\frac{{{x}^{2}}+9-6x}{\left( x-3 \right)\left( {{x}^{2}}+9 \right)} \\& =\frac{{{(x+3)}^{2}}}{({{x}^{2}}+9)(x+3)}.\frac{(x-3)({{x}^{2}}+9)}{{{(x-3)}^{2}}} \\ & =\frac{x+3}{x-3}. \\\end{align}\)

b) Ta có Q = \(\frac{x+3}{x-3}\),\(|x|=2\Leftrightarrow x=\pm 2\)

Với  \(x=2\Rightarrow Q=\frac{2+3}{2-3}=-5\)

Với  \(x=-2\Rightarrow Q=\frac{-2+3}{-2-3}=\frac{-1}{5}\)

c) \(Q=\frac{x+3}{x-3}=\frac{x-3+6}{x-3}=1+\frac{6}{x-3}\)

\(Q\in Z\Leftrightarrow 1+\frac{6}{x-3}\in Z\Leftrightarrow \frac{6}{x-3}\in Z\Leftrightarrow x-3\in U(6)=\left\{ \pm 1;\pm 2;\pm 3;\pm 6 \right\}\)

Bảng giá trị:

Nhận thấy trong các giá trị \(x\) tìm được, chỉ có \(2\)  và \(5\)  là số nguyên tố.

Vậy các giá trị \(x\) cần tìm là  \(x=2\) và \(x=5.\)

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 8 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com