Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho parabol \(y=-{{x}^{2}}\). Vẽ đường thẳng song song với trục hoành cắt trục tung tại điểm

Câu hỏi số 213642:
Vận dụng

Cho parabol \(y=-{{x}^{2}}\). Vẽ đường thẳng song song với trục hoành cắt trục tung tại điểm \(-5\) và cắt parabol tại \(M\) và \(N\). Diện tích tam giác \(OMN\) là

Đáp án đúng là: B

Quảng cáo

Câu hỏi:213642
Phương pháp giải

Phương pháp:

Hoành độ giao điểm hai đồ thị \(y={{f}_{1}}\left( x \right)\) và \(y={{f}_{2}}\left( x \right)\) là nghiệm của phương trình \({{f}_{1}}\left( x \right)-{{f}_{2}}\left( x \right)=0\)

Công thức tính diện tích tam giác: \(S=\frac{1}{2}a.h\) (\(a\) là độ dài đáy, \(h\) là chiều cao tương ứng)

Giải chi tiết

Giải:

Đường thẳng song song với \(Ox\) cắt \(Oy\) tại \(-5\)  là đường thẳng \(f:y=-5\). Hoành độ giao điểm của \(\left( P \right)\) và \(f\) là nghiệm của phương trình \(-{{x}^{2}}=-5\Rightarrow \left[ \begin{align}& x=\sqrt{5} \\& x=-\sqrt{5} \\\end{align} \right.\). Vậy \(M(-\sqrt{5};-5);N(\sqrt{5};-5)\).

Ta có : \(MN=AM+AN=\left| -\sqrt{5} \right|+\left| \sqrt{5} \right|=2\sqrt{5}\)

\(OA=\left| -5 \right|=5\)

Vậy \({{S}_{OMN}}=\frac{1}{2}MN.OA=\frac{1}{2}.2\sqrt{5}.5=5\sqrt{5}\).

Đáp án cần chọn là: B

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com