Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Biểu thức \(C = {13^{n + 2}} - {13^n}.23\) (với n là số tự nhiên bất kì) luôn chia hết cho số

Câu hỏi số 217607:
Vận dụng

Biểu thức \(C = {13^{n + 2}} - {13^n}.23\) (với n là số tự nhiên bất kì) luôn chia hết cho số tự nhiên nào dưới đây?

Đáp án đúng là: D

Quảng cáo

Câu hỏi:217607
Phương pháp giải

- Sử dụng phối hợp các phương pháp phân tích đa thức thành nhân tử để biến đổi biểu thức thành tích các đa thức và đơn thức, biểu thức sẽ chia hết cho các đa thức và đơn thức trong tích thu được.

- Nếu đa thức hoặc đơn thức trong tích thu được giống với yêu cầu của đề bài thì suy ra biểu thức đó chia hết cho giá trị đã cho.

Giải chi tiết

\(C = {13^{n + 2}} - {13^n}.23 = {13^n}.\left( {{{13}^2} - 23} \right) = {13^n}.\left( {169 - 23} \right) = {13^n}.146\)

Vậy biểu thức C chia hết cho146.

Ở đáp án A, nếu n = 0 thì C = 146 không chia hết cho 13.

Đáp án cần chọn là: D

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 8 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com