Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Chứng minh rằng \({x^2} - 2x + 8 > 0\) với mọi giá trị của x.

Câu hỏi số 217619:
Vận dụng cao

Chứng minh rằng \({x^2} - 2x + 8 > 0\) với mọi giá trị của x.

Quảng cáo

Câu hỏi:217619
Phương pháp giải

- Sử dụng các phương pháp phân tích đa thức thành nhân tử để biến đổi biểu thức đã cho có dạng \(C = {a^2} + b\), suy ra giá trị nhỏ nhất của biểu thức là b .

Giải chi tiết

\({x^2} - 2x + 8 = {x^2} - 2.x.1 + {1^2} + 7 = {\left( {x - 1} \right)^2} + 7\)

Vì \({\left( {x - 1} \right)^2} \ge 0\) với mọi x nên \({x^2} - 2x + 8 = {\left( {x - 1} \right)^2} + 7 > 0\) với mọi x. (điều phải chứng minh)

 

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 8 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com