Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho đường tròn (O; R) đường kính AB. Qua điểm M thuộc đường tròn (M khác A và B) vẽ tiếp

Câu hỏi số 217767:
Vận dụng

Cho đường tròn (O; R) đường kính AB. Qua điểm M thuộc đường tròn (M khác A và B) vẽ tiếp tuyến với đường tròn cắt các tiếp tuyến tại A và B với đường tròn lần lượt tại C và D

a)  Chứng minh rằng: AC + BD = CD và \(\widehat{COD}\)= 900.

b)  Tính tích AC. BD theo R.

c)  Gọi N là giao điểm của BC và AD. Chứng minh rằng MN vuông góc với AB.

d)  MN cắt AB tại K. Cho biết tan\(\widehat{ABC}=\frac{1}{4}\). Tính độ dài đoạn thẳng BK theo R.

 

Quảng cáo

Câu hỏi:217767
Phương pháp giải

Phương  pháp:

Sử dụng nhuần nhuyễn các tính chất và định lý của đường tròn để làm bài toán như:

+) Góc nội tiếp chắn nửa đường tròn là góc vuông.

+) Tính chất của hai tiếp tuyến cắt nhau…..

Giải chi tiết

Ta có: CA, CM là các tiếp tuyến của (O) \(\Rightarrow \) AC = CM, OC là tia phân giác \(\widehat{AOM}\).

Tương tự BD = DM, OD là tia phân giác \(\widehat{BOM}\). Vậy: AC + BD = CM + DM = CD

OC, OD là hai tia phân giác hai góc kề bù \(\widehat{AOM}\) và \(\Rightarrow \widehat{COD}=\) 900.

\(\Delta \) COD vuông tại O, OM là đường cao

\(\Rightarrow \) CM .DM = OM= R2 \(\Rightarrow \) AC. BD = R2

AC\(\bot \) AB, BD\(\bot \) AB\(\Rightarrow \) AC // BD \(\Rightarrow \frac{AN}{DN}=\frac{AC}{BD}\Rightarrow \frac{AN}{DN}=\frac{CM}{DM}\)

\(\Delta \) ACD có \(\frac{AN}{DN}=\frac{CM}{DM}\) \(\Rightarrow \) MN // AC, mà AC\(\bot \) AB.

Do đó: MN\(\bot \) AB

\(\begin{align} & AC=AB\tan \widehat{ABC}=2R.\frac{1}{4}=\frac{R}{2};\,\,\,BD={{R}^{2}}:\left( \frac{1}{2}R \right)=2R. \\  & \Rightarrow CD=\frac{5R}{2}. \\  &\frac{BK}{AB}=\frac{BN}{BC}=\frac{DM}{CD}\Rightarrow\frac{BK}{2R}=\frac{2R}{\frac{5}{2}R}\Rightarrow BK=\frac{8}{5}R. \\ \end{align}\)

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com