Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

 Đối với hàm số \(y=\frac{mx-1}{x+2}\) có đồ thị \(({{C}_{m}})\)(m là tham số). Với các giá trị

Câu hỏi số 217879:
Thông hiểu

 Đối với hàm số \(y=\frac{mx-1}{x+2}\) có đồ thị \(({{C}_{m}})\)(m là tham số). Với các giá trị nào của m thì đường thẳng y = 2x – 1 cắt đồ thị \(({{C}_{m}})\) tại 2 điểm phân biệt A, B sao cho \(AB=\sqrt{10}\)?

Đáp án đúng là: C

Quảng cáo

Câu hỏi:217879
Phương pháp giải

Hoành độ giao điểm của \(y=f\left( x,m \right)\) và \(y=ax+b\) là nghiệm của phương trình \(f\left( x,m \right)=ax+b.\) Tìm điều kiện của \(m\) để hệ này có nghiệm. Dùng định lý Vi-et để tính độ dài giữa hai giao điểm. Sử dụng giả thiết để đưa ra một phương trình cho ẩn \(m,\) giải phương trình này để tìm \(m.\)

Giải chi tiết

Phương trình hoành độ giao điểm của \(\left( {{C}_{m}} \right)\) và đường thẳng là

\(\frac{{mx - 1}}{{x + 2}} = 2x - 1 \Leftrightarrow \left\{ \begin{array}{l}mx - 1 = \left( {2x - 1} \right)\left( {x + 2} \right)\\x \ne  - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2{x^2} - \left( {m - 3} \right)x - 1 = 0\,\,\left( 1 \right)\\x \ne  - 2\end{array} \right.\,.\,\)

Ta có \(\Delta ={{\left( m-3 \right)}^{2}}-4.2.\left( -1 \right)={{\left( m-3 \right)}^{2}}+4>0\)nên phương trình \(\left( 1 \right)\) đã cho có hai nghiệm phân biệt. Giả sử hai nghiệm này là \({{x}_{1}},{{x}_{2}}.\) Ta có \(2.{{\left( -2 \right)}^{2}}-\left( m-3 \right).\left( -2 \right)-1=0\Leftrightarrow 8+2m-6-1=0\Leftrightarrow m=-\frac{1}{2}.\) Do đó để \(\left( 1 \right)\) có hai nghiệm phân biệt và khác \(-2\) thì \(m\ne -\frac{1}{2}.\) Giả sử \(A\left( {{x}_{1}};2{{x}_{1}}-1 \right),\,B\left( {{x}_{2}};2{{x}_{2}}-1 \right)\) là hai giao điểm của đồ thị và đường thẳng. Khi đó ta có

\(A{{B}^{2}}={{\left( {{x}_{1}}-{{x}_{2}} \right)}^{2}}+{{\left[ \left( 2{{x}_{1}}-1 \right)-\left( 2{{x}_{2}}-1 \right) \right]}^{2}}=5{{\left( {{x}_{1}}-{{x}_{2}} \right)}^{2}}=5{{\left( {{x}_{1}}+{{x}_{2}} \right)}^{2}}-20{{x}_{1}}{{x}_{2}}\,\,\left( 2 \right).\)

Áp dụng định lý Vi-et cho phương trình \(\left( 1 \right)\) ta có \({{x}_{1}}+{{x}_{2}}=\frac{m-3}{2},\,{{x}_{1}}{{x}_{2}}=-\frac{1}{2}\) thay vào \(\left( 2 \right)\) ta nhận được

\(10=5{{\left( \frac{m-3}{2} \right)}^{2}}-20.\left( -\frac{1}{2} \right)=\frac{5}{4}{{\left( m-3 \right)}^{2}}+10\Leftrightarrow m=3\ne -\frac{1}{2}.\)

Vậy giá trị \(m\) cần tìm là \(m=3.\)

Chọn đáp án C.

Chú ý khi giải

Học sinh thường quên kiểm tra điều kiện phương trình \(\left( 1 \right)\) cần có nghiệm khác \(-2.\)

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com