Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

 Cho hàm số  \(y=\sqrt{x+\frac{1}{x}}\). Giá trị nhỏ nhất của hàm số trên \((0;+\infty )\) bằng

Câu hỏi số 217881:
Thông hiểu

 Cho hàm số  \(y=\sqrt{x+\frac{1}{x}}\). Giá trị nhỏ nhất của hàm số trên \((0;+\infty )\) bằng :

Đáp án đúng là: B

Quảng cáo

Câu hỏi:217881
Phương pháp giải

Áp dụng bất đẳng thức Cô-si.

Giải chi tiết

Áp dụng bất đẳng thức Cô-si ta có \(x+\frac{1}{x}\ge 2\sqrt{x.\frac{1}{x}}=2.\) Dấu bằng xảy ra khi và chỉ khi \(x=1.\) Do đó \(y=\sqrt{x+\frac{1}{x}}\ge \sqrt{2}\) và dấu bằng xảy ra khi và chỉ khi \(x=1.\)

Chọn đáp án B.

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com