Phương trình: \(8{{z}^{2}}-4z+1=0\) có nghiệm là:
Phương trình: \(8{{z}^{2}}-4z+1=0\) có nghiệm là:
Đáp án đúng là: C
Quảng cáo
Phương pháp giải phương trình bậc hai trên tập số phức: \(a{{x}^{2}}+bx+c=0\left( a\ne 0,a,b,c\in R \right)\)
- Tính \(\Delta ={{b}^{2}}-4ac\)
+ \(\Delta >0\) thì phương trình có hai nghiệm thực phân biệt \({{x}_{1,2}}=\frac{-b\pm \sqrt{\Delta }}{2a}\).
+ \(\Delta =0\) thì phương trình có nghiệm kép \({{x}_{1,2}}=-\frac{b}{2a}\).
+ \(\Delta <0\) thì phương trình có hai nghiệm phức phân biệt \({{x}_{1,2}}=\frac{-b\pm i\sqrt{-\Delta }}{2a}\).
- Tính sai \(\Delta \).
- Áp dụng sai công thức nghiệm.
Đáp án cần chọn là: C
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












