Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong mặt phẳng phức, cho \(3\)  điểm \(A,B,C\) lần lượt biểu diễn cho \(3\) số

Câu hỏi số 218206:
Vận dụng

Trong mặt phẳng phức, cho \(3\)  điểm \(A,B,C\) lần lượt biểu diễn cho \(3\) số phức\({{z}_{1}}=1+i;{{z}_{2}}={{\left( 1+i \right)}^{2}};{{z}_{3}}=a-i(a\in R)\). Để \(\Delta ABC\) vuông tại \(B\) thì \(a=\)?

Đáp án đúng là: C

Quảng cáo

Câu hỏi:218206
Phương pháp giải

Số phức \(z=a+bi\) có điểm biểu diễn là \(M\left( a;b \right)\).                                                                  

Điều kiện để tam giác \(ABC\) vuông tại \(B\) là \(\overrightarrow{BA}.\overrightarrow{BC}=0\) hoặc \(A{{B}^{2}}+B{{C}^{2}}=A{{C}^{2}}\).

Giải chi tiết

Ta có: \({{z}_{2}}={{(1+i)}^{2}}=1+2i+{{i}^{2}}=2i\)

   \(\Rightarrow A(1;1),B(0;2),C(a;-1)\)

Khi đó: \(\overrightarrow{AB}=(-1;1)\Rightarrow A{{B}^{2}}=2\)

              \(\overrightarrow{BC}=(a;-3)\Rightarrow B{{C}^{2}}={{a}^{2}}+9\)

             \(\overrightarrow{AC}=(a-1;-2)\Rightarrow A{{C}^{2}}={{\left( a-1 \right)}^{2}}+4={{a}^{2}}-2a+5\)

Để \(\Delta ABC\) vuông tại \(B\) thì \(A{{C}^{2}}=A{{B}^{2}}+B{{C}^{2}}\)

                                    \(\begin{array}{l} \Leftrightarrow {a^2} - 2a + 5 = 2 + {a^2} + 9\\ \Leftrightarrow a =  - 3\end{array}\)

Chú ý khi giải

- Không tìm được mối liên hệ giữa số phức và điểm biểu diễn số phức.

- Tìm sai điều kiện để \(\Delta ABC\)  vuông tại \(B\).

 

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com