Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Gọi F(x) là một nguyên hàm của hàm số \(y = x.\cos x\) mà F(0) = 1. Phát biểu nào sau đây đúng:

Câu 218743: Gọi F(x) là một nguyên hàm của hàm số \(y = x.\cos x\) mà F(0) = 1. Phát biểu nào sau đây đúng:

A. F(x) là hàm chẵn.

B. F(x) là hàm lẻ.

C. F(x) là hàm tuần hoàn với chu kì \(2\pi \).

D. F(x) không là hàm chẵn cũng không là hàm lẻ.

Câu hỏi : 218743

Phương pháp giải:

Sử dụng phương pháp nguyên hàm từng phần bằng cách đặt \(\left\{ \matrix{  u = x \hfill \cr   dv = \cos xdx \hfill \cr}  \right.,\) sau đó sử dụng giả thiết F(0) = 1 để tìm hằng số C và xét tính chẵn, lẻ và tính tuần hoàn của hàm số F(x) tìm được.

  • Đáp án : A
    (12) bình luận (0) lời giải

    Giải chi tiết:

    Ta có \(F\left( x \right) = \int {x.\cos xdx} \)

    Đặt \(\left\{ \matrix{  u = x \hfill \cr   dv = \cos xdx \hfill \cr}  \right. \Rightarrow \left\{ \matrix{  du = dx \hfill \cr   v = \sin x \hfill \cr}  \right. \Rightarrow F\left( x \right) = x\sin x - \int {\sin xdx}  + C = x\sin x + \cos x + C.\)

    \(F\left( 0 \right) = 1 \Leftrightarrow 0\sin 0 + \cos 0 + C = 1 \Leftrightarrow 1 + C = 1 \Leftrightarrow C = 0 \Rightarrow F\left( x \right) = x\sin x + \cos x\)

    Ta có: \(F\left( { - x} \right) = \left( { - x} \right)\sin \left( { - x} \right) + \cos \left( { - x} \right) = x\sin x + \cos x = F\left( x \right) \Rightarrow F\left( x \right)\) là hàm chẵn.

    Chọn A.

    Chú ý:

    Khi có hàm đa thức và hàm lượng giác, ta ưu tiên đặt u là hàm đa thức.

    Lời giải sai Bình thường Khá hay Rất Hay
Xem bình luận

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com