Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Kí hiệu \(S\) là diện tích của hình phẳng giới hạn bởi các đường \(y = x\sin x,\,\,y = 0\) và

Câu hỏi số 220681:
Nhận biết

Kí hiệu \(S\) là diện tích của hình phẳng giới hạn bởi các đường \(y = x\sin x,\,\,y = 0\) và \(x = 0,\,\,x = \pi .\) Khẳng định nào dưới đây đúng ?

Đáp án đúng là: D

Quảng cáo

Câu hỏi:220681
Phương pháp giải

Xét phương trình hoành độ giao điểm tìm các nghiệm thuộc \(\left[ {0;\pi } \right]\).

Áp dụng công thức diện tích hình phẳng giới hạn bởi \(y = f\left( x \right),\,\,y = 0,\,\,x = a,\,\,x = b\) là \(S = \int\limits_a^b {\left| {f\left( x \right)} \right|{\rm{d}}x} \)

Giải chi tiết

Xét phương trình hoành độ giao điểm \(x\sin x = 0 \Leftrightarrow \left[ \matrix{  x = 0 \hfill \cr   \sin 0 = 0 \hfill \cr}  \right. \Leftrightarrow \left[ \matrix{  x = 0 \in \left[ {0;\pi } \right] \hfill \cr   x = \pi  \in \left[ {0;\pi } \right] \hfill \cr}  \right.\)

Diện tích hình phẳng cần tính là \(S = \int\limits_0^\pi  {\left| {x.\sin x} \right|{\rm{d}}x}  = \int\limits_0^\pi  {x.\sin x\,{\rm{d}}x} \) (\(x \in \left[ {0;\pi } \right] \Rightarrow x\sin x > 0\)).

Đặt \(\left\{ \matrix{  u = x \hfill \cr   {\rm{d}}v = \sin x\,{\rm{d}}x \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  {\rm{d}}u = {\rm{d}}x \hfill \cr   v =  - \,\cos x \hfill \cr}  \right.\,\, \Rightarrow \,\,S =  - \,\left. {x.\cos x} \right|_0^\pi  + \int\limits_0^\pi  {\cos x\,{\rm{d}}x}  = \left. {\left( {\sin x - x.\cos x} \right)} \right|_0^\pi  = \pi \)

Vậy \(S = \pi \, \Rightarrow \,\,\cos 2S = \cos 2\pi  = 1.\)

Chú ý khi giải

Sau khi viết được công thức tính diện tích các em có thể sử dụng MTCT.

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com