Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Tích diện tích hình phẳng giới hạn bởi \(x =  - \,1;\,\,x = 2;\,\,y = 0;\,\,y = {x^2} - 2x.\)

Câu 220679: Tích diện tích hình phẳng giới hạn bởi \(x =  - \,1;\,\,x = 2;\,\,y = 0;\,\,y = {x^2} - 2x.\)

A. \(S = {8 \over 3}.\)

B. \(S = {4 \over 3}.\)

C. \(S = {2 \over 3}.\)

D. \(S = {{16} \over 3}.\)

Câu hỏi : 220679

Phương pháp giải:

Xét phương trình hoành độ giao điểm, tìm các nghiệm thuộc [-1;2].


Diện tích hình phẳng giới hạn bởi \(y = f\left( x \right),\,\,y = 0,\,\,x = a,\,\,x = b\) là \(S = \int\limits_a^b {\left| {f\left( x \right)} \right|{\rm{d}}x} \), chia đoạn [-1;2] thành các đoạn nhỏ và tính diện tích hình phẳng

  • Đáp án : A
    (10) bình luận (0) lời giải

    Giải chi tiết:

    Xét phương trình hoành độ giao điểm \({x^2} - 2x = 0 \Leftrightarrow \left[ \matrix{  x = 0\, \in \left[ { - 1;2} \right] \hfill \cr   x = 2 \in \left[ { - 1;2} \right] \hfill \cr}  \right.\)

    Do đó diện tích hình phẳng cần tính là \(S = \int\limits_{ - \,1}^2 {\left| {{x^2} - 2x} \right|{\rm{d}}x}  = \int\limits_{ - \,1}^0 {\left| {{x^2} - 2x} \right|{\rm{d}}x}  + \int\limits_0^2 {\left| {{x^2} - 2x} \right|{\rm{d}}x} \)

    \( = \left| {\int\limits_{ - \,1}^0 {\left( {{x^2} - 2x} \right){\rm{d}}x} } \right| + \left| {\int\limits_0^2 {\left( {{x^2} - 2x} \right){\rm{d}}x} } \right| = \left| {\left. {\left( {{{{x^3}} \over 3} - {x^2}} \right)} \right|_{ - \,1}^0} \right| + \left| {\left. {\left( {{{{x^3}} \over 3} - {x^2}} \right)} \right|_0^2} \right| = {4 \over 3} + {4 \over 3} = {8 \over 3}.\)

    Chọn A.

    Lời giải sai Bình thường Khá hay Rất Hay
Xem bình luận

>> Luyện thi TN THPT & ĐH năm 2023 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com