Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

 Phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số

Câu hỏi số 221552:
Thông hiểu

 Phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số \(y={{x}^{3}}-3{{x}^{2}}+1\) là:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:221552
Phương pháp giải

Giải phương trình \(y'=0\)tìm các điểm cực trị.

Phương trình chính tắc của đường thẳng đi qua 2 điểm \(A\left( {{x}_{1}};{{y}_{1}} \right),B\left( {{x}_{2}};{{y}_{2}} \right)\) (với \({{x}_{1}}\ne {{x}_{2}};{{y}_{1}}\ne {{y}_{2}}\) là:

\(\frac{x-{{x}_{1}}}{{{x}_{2}}-{{x}_{1}}}=\frac{y-{{y}_{1}}}{{{y}_{2}}-{{y}_{1}}}\)

Giải chi tiết

\(y'=3{{x}^{2}}-6x\) ; \(y' = 0 \Leftrightarrow 3x\left( {x - 2} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0,y = 1\\x = 2,y =  - 3\end{array} \right.\)

Từ đây suy ra hai điểm cực trị có tọa độ \(A\left( 0,1 \right)\) và \(B\left( 2,-3 \right).\)

Phương trình  đường thẳng qua hai điểm A, B là: \(\frac{x-0}{2-0}=\frac{y-1}{-3-1}\Leftrightarrow -4x=2\left( y-1 \right)\Leftrightarrow y=-2x+1.\)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com