Cho khối chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh a và hai mặt bên \((SAB)\), \((SAC)\)
Cho khối chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh a và hai mặt bên \((SAB)\), \((SAC)\) cùng vuông góc với đáy. Tính thể tích khối chóp \(S.ABC\) biết \(SC=a\sqrt{3}.\)
Đáp án đúng là: B
Quảng cáo
- Sử dụng lí thuyết: Hai mặt phẳng phân biệt cùng vuông góc với mặt phẳng thứ ba thì giao tuyến của 2 mặt phẳng đó vuông góc với mặt phẳng thứ ba.
- Tính độ dài đường cao SA dựa vào định lý Pi-ta-go.
- Sử dụng công thức tính thể tích khối chóp: \(V=\frac{1}{3}S.h\)
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













