Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng\(d:\frac{x-1}{3}=\frac{y-2}{2}=\frac{z-3}{1}\).

Câu hỏi số 221941:
Nhận biết

 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng\(d:\frac{x-1}{3}=\frac{y-2}{2}=\frac{z-3}{1}\). Tìm \(M\in d\)sao cho OM đạt giá trị nhỏ nhất.

Đáp án đúng là: B

Quảng cáo

Câu hỏi:221941
Phương pháp giải
Lấy \(M\in d\) Tính giá trị của OM Biến về bài toán Min, Max
Giải chi tiết

Phương trình tham số của đường thẳng d là \(d:\left\{ \begin{array}{l}x = 1 + 3t\\y = 2 + 2t\\z = 3 + t\end{array} \right.\)

Lấy \(M\in (d)\Rightarrow M(1+3t;2+2t;3+t)\). Khi đó ta có:

\(\begin{array}{l}\overrightarrow {OM}  = \left( {1 + 3t;2 + 2t;3 + t} \right)\\ \Rightarrow OM = \sqrt {{{\left( {1 + 3t} \right)}^2} + {{\left( {2 + 2t} \right)}^2} + {{\left( {3 + t} \right)}^2}}  = \sqrt {14{t^2} + 20t + 14} \\ = \sqrt {14} .\sqrt {{t^2} + \frac{{10}}{7}t + 1}  = \sqrt {14} .\sqrt {{{\left( {t + \frac{5}{7}} \right)}^2} + \frac{{24}}{{49}}}  \ge \sqrt {\frac{{48}}{7}} \end{array}\)

Dấu = xảy ra khi \(t=-\frac{5}{7}\). Suy ra \(M\left( -\frac{8}{7};\frac{4}{7};\frac{16}{7} \right)\) 

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com