Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hình phẳng \(D\) giới hạn bởi đường cong \(y={{e}^{x}},\) trục hoành và các đường thẳng \(x=0,\,\,x=1.\) Khối tròn xoay tạo thành khi quay \(D\) quanh trục hoành có thể tích \(V\) bằng bao nhiêu ?

Câu 222100: Cho hình phẳng \(D\) giới hạn bởi đường cong \(y={{e}^{x}},\) trục hoành và các đường thẳng \(x=0,\,\,x=1.\) Khối tròn xoay tạo thành khi quay \(D\) quanh trục hoành có thể tích \(V\) bằng bao nhiêu ?

A. \(V=\frac{\pi {{e}^{2}}}{2}.\)         

B. \(V=\frac{\pi \left( {{e}^{2}}+1 \right)}{2}.\)                                            

C. \(V=\frac{{{e}^{2}}-1}{2}.\)                                           

D.  \(V=\frac{\pi \left( {{e}^{2}}-1 \right)}{2}.\)

Câu hỏi : 222100

Phương pháp giải:

Thể tích khối tròn xoay khi xoay hình phẳng giới hạn bởi các đường \(y=f\left( x \right),x=a,x=b\) quanh trục Ox là: \(V=\pi .\int\limits_{a}^{b}{{{f}^{2}}\left( x \right)\text{d}x}.\)

  • Đáp án : D
    (0) bình luận (0) lời giải

    Giải chi tiết:

    Thể tích khối tròn xoay được tính theo công thức \(V=\pi \int\limits_{0}^{1}{{{f}^{2}}\left( x \right)\,\text{d}x}.\)

    \( = \pi \int\limits_0^1 {{{\left( {{e^x}} \right)}^2}\,{\rm{d}}x}  = \pi \int\limits_0^1 {{e^{2x}}\,{\rm{d}}x}  = \frac{\pi }{2}\left. {{e^{2x}}} \right|_0^1 = \frac{\pi }{2}\left( {{e^2} - 1} \right)\)

    Khi đó \(V=\pi \int\limits_{1}^{{{e}^{2}}}{\frac{\text{d}t}{2}}=\frac{\pi }{2}\int\limits_{1}^{{{e}^{2}}}{\text{d}t}=\frac{\pi }{2}.\left. t \right|_{1}^{{{e}^{2}}}=\frac{\pi \left( {{e}^{2}}-1 \right)}{2}.\)

    Vậy \(V=\frac{\pi \left( {{e}^{2}}-1 \right)}{2}.\)

    Chọn D.

     

    Lời giải sai Bình thường Khá hay Rất Hay

Hỗ trợ - HƯớng dẫn

  • 024.7300.7989
  • 1800.6947free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com