Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Giải bất phương trình sau \({\log _{\frac{1}{5}}}\left( {3x - 5} \right) > {\log _{\frac{1}{5}}}\left( {x +

Câu hỏi số 222356:
Thông hiểu

Giải bất phương trình sau \({\log _{\frac{1}{5}}}\left( {3x - 5} \right) > {\log _{\frac{1}{5}}}\left( {x + 1} \right)\)

Đáp án đúng là: A

Quảng cáo

Câu hỏi:222356
Phương pháp giải

Với a ∈ (0;1) thì \({\log _a}f\left( x \right) > {\log _a}g\left( x \right) \Leftrightarrow 0 < f\left( x \right) < g\left( x \right)\)

Giải chi tiết

Bất phương trình đã cho tương đương với \(0 < 3x - 5 < x + 1 \Leftrightarrow \left\{ \begin{array}{l}x > \frac{5}{3}\\2x < 6\end{array} \right. \Leftrightarrow \frac{5}{3} < x < 3\)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com