Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{2\left( {\sqrt {x + 3} - 2} \right)}}{{{x^2} -

Câu hỏi số 224603:
Thông hiểu

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{2\left( {\sqrt {x + 3} - 2} \right)}}{{{x^2} - 1}}{\rm{ }}\text{ nếu }{\rm{ }}x > 1\\a{x^2} + bx + \dfrac{1}{4}{\rm\text{ nếu }}x < 1\\a - b - \dfrac{7}{4}{\rm\text{ nếu }}x = 1\end{array} \right.\) liên tục tại \(x = 1\). Tính \(A = 2018a + b\)

Đáp án đúng là: B

Quảng cáo

Câu hỏi:224603
Phương pháp giải

Hàm số liên tục tại điểm x = 1 khi và chỉ khi \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = f\left( 1 \right)\)

Giải chi tiết

Ta có

\(\begin{array}{l}\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \dfrac{{2\left( {\sqrt {x + 3} - 2} \right)}}{{{x^2} - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{2\left( {x - 1} \right)}}{{\left( {\sqrt {x + 3} + 2} \right)\left( {x - 1} \right)\left( {x + 1} \right)}} = \mathop {\lim }\limits_{x \to {1^ + }} \dfrac{2}{{\left( {\sqrt {x + 3} + 2} \right)\left( {x + 1} \right)}} = \dfrac{1}{4}\\\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {a{x^2} + bx + \dfrac{1}{4}} \right) = a + b + \frac{1}{4}\\f\left( 1 \right) = a - b - \dfrac{7}{4}\end{array}\)

Hàm số liên tục tại x = 1 nên ta có 

\(\begin{array}{l}\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = f\left( 1 \right) \Leftrightarrow \dfrac{1}{4} = a + b + \dfrac{1}{4} = a - b - \dfrac{7}{4} \Leftrightarrow \left\{ \begin{array}{l}a + b = 0\\a - b = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = - 1\end{array} \right.\\ \Rightarrow A = 2018a + b = 2018 - 1 = 2017.\end{array}\)

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com