Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm \(m\) để hàm số \(y = \dfrac{{2\cos x + 1}}{{\cos x - m}}\) đồng biến trên khoảng \(\left( {0;\pi }

Câu hỏi số 225144:
Vận dụng

Tìm \(m\) để hàm số \(y = \dfrac{{2\cos x + 1}}{{\cos x - m}}\) đồng biến trên khoảng \(\left( {0;\pi } \right).\)

Đáp án đúng là: D

Quảng cáo

Câu hỏi:225144
Phương pháp giải

Tính đạo hàm \(y'.\) Để hàm số đồng biến trên \(\left( {0;\pi } \right)\) thì ta cần \(y'\left( x \right) > 0,\,\,\forall x \in \left( {0;\pi } \right).\) Giải bất phương trình để tìm \(m.\)

Giải chi tiết

Để hàm số \(y\) đồng biến trên \(\left( {0;\pi } \right)\) thì trước hết tập xác định của hàm số phải là \(\left( {0;\pi } \right).\) Do với \(x \in \left( {0;\pi } \right)\) thì \(\cos x \in \left( { - 1;1} \right)\) nên điều kiện cần là \(\left| m \right| \ge 1.\)

Với \(\left| m \right| \ge 1\) ta có \(y'\left( x \right) = \dfrac{{2m\sin x + {\mathop{\rm s}\nolimits} i{\rm{n}}x}}{{{{\left( {\cos x - m} \right)}^2}}} \Rightarrow \,y'\left( x \right) > 0\,\,\,\forall x \in \left( {0;\pi } \right) \Leftrightarrow \,\,\dfrac{{2m\sin x + {\mathop{\rm s}\nolimits} i{\rm{n}}x}}{{{{\left( {\cos x - m} \right)}^2}}} > 0\,\,\,\forall x \in \left( {0;\pi } \right) \Leftrightarrow {\mathop{\rm s}\nolimits} {\rm{inx}}\left( {2m + 1} \right) > 0\,\,\forall x \in \left( {0;\pi } \right).\)

Do với \(x \in \left( {0;\pi } \right)\) thì \({\mathop{\rm s}\nolimits} {\rm{inx}} > 0\) nên bất phương trình \(\left( {2m + 1} \right)\sin x > 0\,\,\,\forall x \in \left( {0;\pi } \right) \Rightarrow 2m + 1 > 0 \Rightarrow m >  - \dfrac{1}{2}.\)

Đối chiếu với điều kiện \(\left| m \right| \ge 1\) ta nhận được \(m \ge 1.\)

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com