Cho phương trình \(2{{\rm{x}}^2} + 3{\rm{x}} - 14 = 2\sqrt[3]{{2{{\rm{x}}^2} + 3{\rm{x}} - 10}}\) . Giả sử x1,
Cho phương trình \(2{{\rm{x}}^2} + 3{\rm{x}} - 14 = 2\sqrt[3]{{2{{\rm{x}}^2} + 3{\rm{x}} - 10}}\) . Giả sử x1, x2 là 2 nghiệm của phương trình. Tính giá trị biểu thức \(A = \sqrt {{x_1}^2 + {x_2}^2 - 4{{\rm{x}}_1}.{x_2}} \)
Đáp án đúng là: D
Quảng cáo
+ Đặt \(t = \sqrt[3]{{2{{\rm{x}}^2} + 3{\rm{x}} - 10}}\) suy ra phương trình bậc 3 với ẩn t
+ Tính giá trị biểu thức A bằng cách sử dụng định lý Vi – et
Đáp án cần chọn là: D
>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












