Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho biểu thức \(S = C_{2017}^{1009} + C_{2017}^{1010} + C_{2017}^{1011} + C_{2017}^{1012}... + C_{2017}^{2017}\).

Câu hỏi số 226084:
Thông hiểu

Cho biểu thức \(S = C_{2017}^{1009} + C_{2017}^{1010} + C_{2017}^{1011} + C_{2017}^{1012}... + C_{2017}^{2017}\). Khẳng định nào sau đây đúng?

Đáp án đúng là: B

Quảng cáo

Câu hỏi:226084
Phương pháp giải

+) Xuất phát từ khai triển nhị thức \({\left( {a + b} \right)^n} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + C_n^2{a^{n - 2}}{b^2} + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\)

+) Thay \(a,b,n\) bằng các giá trị thích hợp.

+) Áp dụng tính chất \(C_n^k = C_n^{n - k}\)

Giải chi tiết

Áp dụng tính chất \(C_n^k = C_n^{n - k}\) ta có:

\(S = C_{2017}^{1009} + C_{2017}^{1010} + C_{2017}^{1011} + C_{2017}^{1012}... + C_{2017}^{2017} = C_{2017}^{1008} + C_{2017}^{1007} + C_{2017}^{1006} + C_{2017}^{1005}... + C_{2017}^0\)

Suy ra \(2S = C_{2017}^0 + ... + C_{2017}^{1005} + C_{2017}^{1006} + C_{2017}^{1007} + C_{2017}^{1008} + C_{2017}^{1009} + C_{2017}^{1010} + C_{2017}^{1011} + C_{2017}^{1012}... + C_{2017}^{2017}\)

Ta có: \({\left( {a + b} \right)^{2017}} = C_{2017}^0{a^{2017}} + C_{2017}^1{a^{2016}}b + C_{2017}^2{a^{2015}}{b^2} + ... + C_{2017}^{2016}a{b^{2016}} + C_{2017}^{2017}{b^{2017}}\)

Thay \(a = 1,b = 1\) ta có:

\(\begin{array}{l}
{2^{2017}} = C_{2017}^0 + C_{2017}^1 + C_{2017}^2 + ... + C_{2017}^{2016} + C_{2017}^{2017}\\
\Leftrightarrow {2^{2017}} = 2S \Leftrightarrow S = {2^{2016}}
\end{array}\)

Đáp án cần chọn là: B

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com