Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm số hạng chứa \({x^3}{y^3}\) trong khai triển của biểu thức \({(x + 2y)^6}\) thành đa thức:

Câu hỏi số 227113:
Thông hiểu

Tìm số hạng chứa \({x^3}{y^3}\) trong khai triển của biểu thức \({(x + 2y)^6}\) thành đa thức:

Đáp án đúng là: B

Quảng cáo

Câu hỏi:227113
Phương pháp giải

Áp dụng Công thức khai triển nhị thức Newton: \({(x + y)^n} = \sum\limits_{i = 0}^n {C_n^i{x^i}.{y^{n - i}}} \)

 

Giải chi tiết

\({(x + 2y)^6} = \sum\limits_{i = 0}^6 {C_6^i{x^i}.{{(2y)}^{6 - i}}}  = \sum\limits_{i = 0}^6 {C_6^i{{.2}^{6 - i}}{x^i}{y^{6 - i}}} \)

Số hạng chứa \({x^3}{y^3}\) ứng với thỏa mãn:

\(\left\{ \begin{array}{l}
i = 3\\
6 - i = 3
\end{array} \right. \Leftrightarrow i = 3\)

Số hạng chứa \({x^3}{y^3}\) là : \(C_6^3{.2^3}{x^3}{y^3} = 160{x^3}{y^3}\)

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com