Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tập nghiệm của bất phương trình \({\left( {{x^2} + x + 1} \right)^x} < 1\) là :

Câu hỏi số 228718:
Thông hiểu

Tập nghiệm của bất phương trình \({\left( {{x^2} + x + 1} \right)^x} < 1\) là :

Đáp án đúng là: C

Quảng cáo

Câu hỏi:228718
Phương pháp giải

Sử dụng phương pháp loganepe hai vế để giải bất phương trình.

\(f\left( x \right)g\left( x \right) < 0 \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}f\left( x \right) < 0\\g\left( x \right) > 0\end{array} \right.\\\left\{ \begin{array}{l}f\left( x \right) > 0\\g\left( x \right) < 0\end{array} \right.\end{array} \right.\)

Giải chi tiết

\({\left( {{x^2} + x + 1} \right)^x} < 1\)

Lấy loganepe hai vế ta có \(\ln {\left( {{x^2} + x + 1} \right)^x} < \ln 1\,\,\left( * \right)\)

Vì \({x^2} + x + 1 = {\left( {x + \frac{1}{2}} \right)^2} + \frac{3}{4} > 0 \Rightarrow \left( * \right) \Leftrightarrow x\ln \left( {{x^2} + x + 1} \right) < 0 \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x < 0\\\ln \left( {{x^2} + x + 1} \right) > 0\end{array} \right.\\\left\{ \begin{array}{l}x > 0\\\ln \left( {{x^2} + x + 1} \right) < 0\end{array} \right.\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x < 0\\{x^2} + x + 1 > 1\end{array} \right.\\\left\{ \begin{array}{l}x > 0\\{x^2} + x + 1 < 1\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x < 0\\{x^2} + x > 0\end{array} \right.\\\left\{ \begin{array}{l}x > 0\\{x^2} + x < 0\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x < 0\\\left[ \begin{array}{l}x > 0\\x <  - 1\end{array} \right.\end{array} \right.\\\left\{ \begin{array}{l}x > 0\\ - 1 < x < 0\end{array} \right.\end{array} \right. \Leftrightarrow x <  - 1\)

Vậy tập nghiệm của bất phương trình là \(\left( { - \infty ; - 1} \right)\).

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com