Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tập nghiệm của bất phương trình \({3^{\sqrt {2x}  + 1}} - {3^{x + 1}} \le {x^2} - 2x\) là:

Câu hỏi số 228726:
Vận dụng cao

Tập nghiệm của bất phương trình \({3^{\sqrt {2x}  + 1}} - {3^{x + 1}} \le {x^2} - 2x\) là:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:228726
Phương pháp giải

Chuyển vế, xét hàm số đặc trưng và giải bất phương trình bằng phương pháp hàm số.

Giải chi tiết

ĐK: \(x \ge 0\)

\({3^{\sqrt {2x}  + 1}} - {3^{x + 1}} \le {x^2} - 2x \Leftrightarrow {3^{\sqrt {2x}  + 1}} + 2x \le {3^{x + 1}} + {x^2} \Leftrightarrow {3^{\sqrt {2x}  + 1}} + {\left( {\sqrt {2x} } \right)^2} \le {3^{x + 1}} + {x^2}\)

Xét hàm số \(f\left( t \right) = {3^{t + 1}} + {t^2}\)  có \(f'\left( t \right) = {3^{t + 1}}.\ln 3 + 2t > 0\,\,\forall t \ge 0 \Rightarrow \) Hàm số đồng biến trên \(\left[ {0; + \infty } \right)\)

Mà \(f\left( {\sqrt {2x} } \right) \le f\left( x \right) \Leftrightarrow \sqrt {2x}  \le x \Leftrightarrow 2x \le {x^2} \Leftrightarrow {x^2} - 2x \ge 0 \Leftrightarrow x \in \left( { - \infty ;0} \right] \cup \left[ {2; + \infty } \right)\)

Mà \(x \ge 0 \Rightarrow x \in \left[ {2; + \infty } \right) \cup \left\{ 0 \right\}\)

Chú ý khi giải

Lưu ý điều kiện xác định của bất phương trình.

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com