Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Có hai hộp chứa bi. Hộp thứ nhất chứa 4 viên bi đỏ và 3 viên bi trắng, hộp thứ hai chứa 2

Câu hỏi số 229523:
Vận dụng

Có hai hộp chứa bi. Hộp thứ nhất chứa 4 viên bi đỏ và 3 viên bi trắng, hộp thứ hai chứa 2 viên bi đỏ và 4 viên bi trắng. Lấy ngẫu nhiên từ mỗi hộp ra một viên bi, tính xác suất để 2 viên lấy ra cùng màu.

Đáp án đúng là: A

Quảng cáo

Câu hỏi:229523
Phương pháp giải
Tính số phần tử của không gian mẫu \(\left| \Omega  \right|\) Tính số kết quả có lợi cho biến cố \(\left| A \right|\) Sử dụng công thức tính xác suất \(P(A)=\frac{\left| A \right|}{\left| \Omega  \right|}\) 
Giải chi tiết

Số phần tử của không gian mẫu \(\Omega \)là \(\left| \Omega  \right|=C_{7}^{1}.C_{6}^{1}=42\)

Gọi A là biến cố “lấy được hai viên bi cùng màu”.

Trường hợp 1: Lấy được hai viên bi màu đỏ, ta có \(C_{4}^{1}.C_{2}^{1}=8\)

Trường hợp 2: Lấy được hai viên bi màu trắng, ta có \(C_{3}^{1}.C_{4}^{1}=12\)

 Ta có: \(\left| A \right|=8+12=20\)

Suy ra \(P(A)=\frac{\left| A \right|}{\left| \Omega  \right|}=\frac{20}{42}=\frac{10}{21}\)

Chọn  A

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com