Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho phương trình \(2{x^4} - 5{x^2} + x + 1 = 0\,\,\,\left( 1 \right)\). Trong các mệnh đề sau, mệnh đề

Câu hỏi số 229859:
Thông hiểu

Cho phương trình \(2{x^4} - 5{x^2} + x + 1 = 0\,\,\,\left( 1 \right)\). Trong các mệnh đề sau, mệnh đề nào đúng?

Đáp án đúng là: B

Quảng cáo

Câu hỏi:229859
Phương pháp giải

Hàm số \(y = f\left( x \right)\) liên tục trên \(\left( {a;b} \right)\) và \(f\left( a \right).f\left( b \right) < 0\) thì tồn tại ít nhất một số \({x_0} \in \left( {a;b} \right)\) sao cho x0 là nghiệm của phương trình \(f\left( x \right) = 0\).

Giải chi tiết

TXĐ: D = R. Hàm số \(f\left( x \right) = 2{x^4} - 5{x^2} + x + 1\) liên tục trên R.

Ta có: \(f\left( { - 1} \right) =  - 3,\,\,f\left( 0 \right) = 1 \Rightarrow f\left( { - 1} \right)f\left( 0 \right) < 0 \Rightarrow \) Phương trình (1) có ít nhất một nghiệm trong \(\left( { - 1;0} \right) \subset \left( { - 2;1} \right)\)

Ta có \(f\left( 0 \right) = 1;f\left( 1 \right) =  - 1 \Rightarrow f\left( 0 \right).f\left( 1 \right) < 0 \Rightarrow \) Phương trình (1) có ít nhất 1 nghiệm thuộc \(\left( {0;1} \right) \subset \left( { - 2;1} \right)\).

\( \Rightarrow \)  Phương trình (1) có ít nhất hai nghiệm trong \(\left( { - 2;1} \right) \Rightarrow \) Đáp án A sai.

Ta có: \(f\left( { - 1} \right) =  - 3,\,\,f\left( 0 \right) = 1 \Rightarrow f\left( { - 1} \right)f\left( 0 \right) < 0 \Rightarrow \) Phương trình (1) có ít nhất một nghiệm trong \(\left( { - 1;0} \right) \subset \left( { - 2;0} \right) \Rightarrow \) Đáp án C sai.

 Ta có \(f\left( 0 \right) = 1;f\left( 1 \right) =  - 1 \Rightarrow f\left( 0 \right).f\left( 1 \right) < 0 \Rightarrow \) Phương trình (1) có ít nhất 1 nghiệm thuộc \(\left( {0;1} \right) \subset \left( { - 1;1} \right) \Rightarrow \) Đáp án D sai.

Đáp án cần chọn là: B

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com