Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hàm số \(f\left( x \right) = \left\{ \matrix{  {{\sqrt {1 + x}  - 1} \over x}\quad \;khi\;\;\,\,\,x > 0 \hfill \cr   a + 2x\quad \;\quad \,\,\,\,\,\,khi\;\;\,\,\,x \le 0 \hfill \cr}  \right.\)

Với giá trị nào của \(a\) thì hàm số đã cho liên tục tại \(x = 0\)?

Câu 229937: Cho hàm số \(f\left( x \right) = \left\{ \matrix{  {{\sqrt {1 + x}  - 1} \over x}\quad \;khi\;\;\,\,\,x > 0 \hfill \cr   a + 2x\quad \;\quad \,\,\,\,\,\,khi\;\;\,\,\,x \le 0 \hfill \cr}  \right.\)


Với giá trị nào của \(a\) thì hàm số đã cho liên tục tại \(x = 0\)?

A. \({1 \over 2}\)

B. \({-1 \over 2}\)

C. \({3 \over 2}\)

D. \({2 \over 3}\)

Câu hỏi : 229937

Phương pháp giải:

Để hàm số liên tục tại x = 0 thì \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = f\left( 0 \right)\)

  • Đáp án : A
    (3) bình luận (0) lời giải

    Giải chi tiết:

    \(\eqalign{  & \mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} {{\sqrt {1 + x}  - 1} \over x} = \mathop {\lim }\limits_{x \to {0^ + }} {{1 + x - 1} \over {x\left( {\sqrt {1 + x}  + 1} \right)}} = \mathop {\lim }\limits_{x \to {0^ + }} {1 \over {\sqrt {1 + x}  + 1}} = {1 \over 2}  \cr   & \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \left( {a + 2x} \right) = a = f\left( 0 \right) \cr} \)

    Để hàm số liên tục tại x = 0 thì \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = f\left( 0 \right) \Leftrightarrow a = {1 \over 2}\)

    Chọn A.

    Lời giải sai Bình thường Khá hay Rất Hay
Xem bình luận

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com