Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Giới hạn của hàm số \(\mathop {\lim }\limits_{x \to  + \infty } \left( {\sqrt {{x^2} + 2x}  - x} \right)\)

Câu hỏi số 229943:
Nhận biết

Giới hạn của hàm số \(\mathop {\lim }\limits_{x \to  + \infty } \left( {\sqrt {{x^2} + 2x}  - x} \right)\) bằng bao nhiêu

Đáp án đúng là: D

Quảng cáo

Câu hỏi:229943
Phương pháp giải

Nhân cả tử và mẫu với biểu thức liên hợp của tử sau đó chia cả tử và mẫu cho x mũ bậc cao nhất của cả tử và mẫu, sử dụng giới hạn \(\mathop {\lim }\limits_{x \to \infty } {1 \over {{n^\alpha }}} = 0\,\,\left( {\alpha  > 0} \right)\)

Giải chi tiết

\(\mathop {\lim }\limits_{x \to  + \infty } \left( {\sqrt {{x^2} + 2x}  - x} \right) = \mathop {\lim }\limits_{x \to  + \infty } {{{x^2} + 2x - {x^2}} \over {\sqrt {{x^2} + 2x}  + x}} = \mathop {\lim }\limits_{x \to  + \infty } {{2x} \over {\sqrt {{x^2} + 2x}  + x}} = \mathop {\lim }\limits_{x \to  + \infty } {2 \over {\sqrt {1 + {2 \over x}}  + 1}} = 1\)

Đáp án cần chọn là: D

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com